
J. Fluid Mech. (1999), vol. 396, pp. 1–36. Printed in the United Kingdom

c© 1999 Cambridge University Press

1

Fully nonlinear internal waves in
a two-fluid system

By W O O Y O U N G C H O I AND R O B E R T O C A M A S S A†
Theoretical Division and Center for Nonlinear Studies,

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(Received 20 January 1999 and in revised form 12 April 1999)

Model equations that govern the evolution of internal gravity waves at the interface
of two immiscible inviscid fluids are derived. These models follow from the original
Euler equations under the sole assumption that the waves are long compared to the
undisturbed thickness of one of the fluid layers. No smallness assumption on the
wave amplitude is made. Both shallow and deep water configurations are considered,
depending on whether the waves are assumed to be long with respect to the total
undisturbed thickness of the fluids or long with respect to just one of the two
layers, respectively. The removal of the traditional weak nonlinearity assumption is
aimed at improving the agreement with the dynamics of Euler equations for large-
amplitude waves. This is obtained without compromising much of the simplicity
of the previously known weakly nonlinear models. Compared to these, the fully
nonlinear models’ most prominent feature is the presence of additional nonlinear
dispersive terms, which coexist with the typical linear dispersive terms of the weakly
nonlinear models. The fully nonlinear models contain the Korteweg–de Vries (KdV)
equation and the Intermediate Long Wave (ILW) equation, for shallow and deep
water configurations respectively, as special cases in the limit of weak nonlinearity
and unidirectional wave propagation. In particular, for a solitary wave of given
amplitude, the new models show that the characteristic wavelength is larger and
the wave speed is smaller than their counterparts for solitary wave solutions of the
weakly nonlinear equations. These features are compared and found in overall good
agreement with available experimental data for solitary waves of large amplitude in
two-fluid systems.

1. Introduction
Nonlinearity and dispersion are two fundamental mechanisms of gravity wave

propagation in fluids. As a general rule, it is well known that nonlinearity tends
to steepen a given wave form during the course of its evolution, while dispersion
has the opposite effect and tends to flatten steep free-surface gradients. The case of
waves at the free-surface of a homogeneous layer of incompressible and inviscid fluid
offers perhaps the simplest set-up for observing the interplay between nonlinearity
and dispersion. One of the most striking manifestations of these two opposing effects
lies in the possibility of a balance, which results in a single wave of elevation, a
solitary wave, propagating at the free surface without change in form. A commonly
accepted way of quantifying the relative importance of nonlinearity and dispersion
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is to introduce two independent non-dimensional parameters: the nonlinearity ratio
α = a/h1 of wave amplitude a and fluid layer thickness h1 and the aspect ratio
ε = h1/L between h1 and a typical wavelength L. The balance responsible for creating
a solitary wave is then usually taken to be a scaling relation between α and ε, in the
form of a power law, for asymptotic values α� 1 and ε� 1.

The next level in complexity is offered by the case of gravity waves at the interface
of two immiscible fluids of different densities. In addition to the two parameters α
and ε = h1/L above, where h1 can now be taken to be the thickness of the upper fluid
layer, there exists another independent parameter, the depth ratio γ = h2/h1, where h2

is the thickness of the lower fluid layer. Even within the weakly nonlinear long-wave
limit of α� 1 and ε� 1, the relative magnitude of α and ε for the balance between
nonlinearity and dispersion can vary according to γ = h2/h1. Different regimes are
possible depending on the depth ratio, ranging between the two extremes of lower
fluid layer thickness that is also small compared to the typical wavelength, and a
lower fluid layer that can be considered effectively infinite.

For shallow water characterized by γ = O(1), the scaling α = O(ε2) with ε� 1 leads
to the Korteweg–de Vries (KdV) equation as the evolution equation governing the
unidirectional propagation of weakly nonlinear long waves (Benjamin 1966). When
the depth of the lower layer is much larger than that of the upper layer (γ � 1), the
scaling α = O(ε) leads to the Intermediate Long Wave (ILW) equation (Joseph 1977;
Kubota, Ko & Dobbs 1978). It reduces to the Benjamin–Ono (BO) equation in the
limit of γ → ∞ (Benjamin 1967; Davis & Acrivos 1967; Ono 1975). More general
forms of equations valid for arbitrary γ have been recently derived by Matsuno
(1993) and Choi & Camassa (1996a) under the assumption of weak nonlinearity.
The common feature of all these models is that by focusing on specific regimes and
initial conditions and taking advantage of the ensuing small parameters (such as α
and ε), the dependence on the vertical coordinate is eliminated, thereby affording
a substantial simplification of the problem. However, to be useful in practice, it is
necessary that the approximation to the original Euler equation be accurate even for
relatively large values of the expansion parameters α and ε. This is in order to ensure
‘robustness’ against other neglected physical effects, such as viscosity. Unfortunately,
there seems to be no way of ascertaining a priori whether a given model possesses
this property. For instance, in the case of one deep fluid layer (γ � 1), the BO and
ILW equations might very well capture the correct asymptotic behaviour of the Euler
equations as α and ε approach zero. However, the experimental data collected by
Koop & Butler (1981) provide evidence that just when these weakly nonlinear models
should become good approximations to the Euler system, viscosity effects become
important and compete with dispersion and nonlinearity, making these models (as
well as the original Euler equations) impractical. In particular, the weak nonlinearity
(small amplitude) assumption seems inadequate for most of the experimental data
collected by these authors.

Despite their physical relevance, the effects of finite amplitude have received much
less attention than the predominantly dispersive phenomena exhibited by weakly
nonlinear models. This is perhaps due to the belief that outside certain special
situations (as in e.g. stationary solutions) accurate description of finite-amplitude
effects, especially dynamical ones, can ultimately be achieved only within the full
Euler equations. Unfortunately, these equations are not easily amenable to analytical
investigations, and their numerical integration in the presence of free surfaces is
notoriously expensive, even in the simplest case of just one horizontal direction. The
purpose of this paper is to show that, at least within the class of physical situations



Fully nonlinear internal waves 3

relative to two-fluid systems, models comparable in simplicity to weakly nonlinear
ones have the potential of accurately describing finite-amplitude dynamical effects.

In an effort towards a comprehensive study of two-fluid fully nonlinear internal
waves, we present here a theoretical investigation of both shallow and deep water
configurations. The former is the one most commonly examined in the literature.
By using a numerical scheme based on Fourier cosine series of large wavelength in
the stationary Euler equations, Funakoshi & Oikawa (1986) obtained steady solitary
wave solutions of finite amplitude in a two-fluid system of finite depth as well as
internal bore (or front) solutions joining smoothly two uniform states of constant
depths at infinity. They found that, when γ = O(1), the KdV theory is valid even for
fairly moderate-amplitude waves except when the depth ratio is close to a critical
value, where the coefficient of the nonlinear term in the KdV equation vanishes.
In this case, Funakoshi & Oikawa show that the modified KdV equation, with an
additional cubic nonlinear term, becomes the appropriate weakly nonlinear evolution
equation. As the wave amplitude increases, the KdV equation ceases to be valid and
Funakoshi & Oikawa’s numerical computations show that highly nonlinear waves
tend to be wider and slower than weakly nonlinear waves of the same amplitude. It
is remarkable that near criticality the modified KdV equation continues to provide
a good approximation, even for large amplitudes, at least as far as the wave profile
is concerned. Computations of steady waves have been further refined for even the
highest waves by Evans & Ford (1996) using a boundary integral technique for
two-fluid Euler equations.

The parameters chosen in the studies mentioned above lie in the regime of shallow
water, and any results for γ � 1 are rarely found in earlier works. Moreover, all
formulations used in these studies are only valid for steady waves, i.e. no time-
dependent wave evolution is addressed besides that of uniform translation. It is
therefore desirable to derive a simple nonlinear model, capable of dealing with
unsteady waves, whose steady solutions possess all the essential features of finite-
amplitude internal waves found earlier. To the best of our knowledge, so far such
a finite-amplitude reduction from two-fluid Euler equations in the spirit of weakly
nonlinear models has not been attempted.

Throughout the present study, we will assume that the internal waves are long
compared with at least one of the thicknesses of the fluid layers, which for definiteness
we take to be that of the upper fluid. The opposite situation (thin lower layer),
more pertinent to atmospheric flows, can be accounted for by a simple variable
transformation. We also concentrate on the case of a fluid contained between two
rigid walls at the top and bottom, with the bottom possibly removed to infinity. Thus
our equations track only one (interfacial) free surface. Our techniques would work for
a free top surface, but so much is gained in the simplicity of the resulting equations
without compromising the essential features of our models that we feel there is no
need to remove the assumption of a rigid top wall in the present study. In terms of
the parameters α and ε introduced above, the regimes in our study satisfy ε� 1 and
α = O(1).

The paper is organized as follows. We derive model equations to describe the
evolution of finite-amplitude long internal waves in §§ 3.1 and 4.1 for shallow and
deep water configurations, respectively. In the shallow water case, the set of equations
derived here by using a systematic asymptotic expansion method can be considered
as the two-layer version of equations derived by Green & Naghdi (1976) for a ho-
mogeneous layer. For steady solutions, we show that this set of equations reduces
to a nonlinear ordinary differential equation derived by Miyata (1985) by using ap-
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Figure 1. A two-fluid system

proximate conservation laws for long waves in shallow water. For the deep water
configuration, our model extends the one introduced by Choi & Camassa (1996b) for
an infinitely deep water configuration. The models we derive conserve all the basic
physical quantities such as mass, momentum and energy, and possess a variational
formulation. In §§ 3.3 and 4.3, several properties of solitary wave solutions are dis-
cussed and compared with weakly nonlinear solutions given in §§ 3.2 and 4.2. The
finite-amplitude model shows that no solitary wave solution can be found beyond a
certain amplitude at which only a front solution exists. This front solution is compared
with the exact solutions of the Euler equations in § 3.4. We find that all the features of
steady solitary wave solutions of the new models are consistent with those determined
by earlier numerical solutions of the Euler equations. Moreover, we examine in detail
the scaling law between wave amplitude and characteristic wavelength with the aim
of comparing the model with the experiment by Koop & Butler (1981). We remark
that the new models support bidirectional wave propagation, and their extension to
two (horizontal) spatial dimensions is straightforward. In the Appendix, we propose
several alternative ways to further simplify these models, for both shallow and deep
water configurations, in the case of unidirectional wave propagation, while retaining
some extra nonlinearity with respect to the weakly nonlinear (KdV and ILW) models.

2. Governing equations
For an inviscid and incompressible fluid of density ρi, the velocity components in

Cartesian coordinates (ui, wi) and the pressure pi satisfy the continuity equation and
the Euler equations,

uix + wiz = 0, (2.1)

uit + uiuix + wiuiz = −pix/ρi, (2.2)

wit + uiwix + wiwiz = −piz/ρi − g, (2.3)

where g is the gravitational acceleration and subscripts with respect to space and time
represent partial differentiation. In a two-fluid system, i = 1 (i = 2) stands for the
upper (lower) fluid (see figure 1) and ρ1 < ρ2 is assumed for a stable stratification.

The boundary conditions at the interface are the continuity of normal velocity and
pressure:

ζt + u1ζx = w1, ζt + u2ζx = w2, p1 = p2 at z = ζ(x, t), (2.4)

where ζ is a displacement of the interface. At the upper and lower rigid surfaces, the
kinematic boundary conditions are given by

w1(x, h1, t) = 0, w2(x,−h2, t) = 0, (2.5)

where h1 (h2) is the undisturbed thickness of the upper (lower) fluid layer.
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From the linearized problem of (2.1)–(2.5), the dispersion relation between wave
speed c and wavenumber k (Lamb 1932, § 231) is

c2 =
(g/k)(ρ2 − ρ1)

ρ1 coth kh1 + ρ2 coth kh2

. (2.6)

Under the long-wave assumption (kh1 → 0), the asymptotic behaviour of the linear
dispersion relation varies depending on the depth ratio or, equivalently, kh2: as
khi → 0 (shallow water),

c = c0

[
1− k2

6

ρ1h
2
1h2 + ρ2h1h

2
2

ρ1h2 + ρ2h1

+ O(k4h4
i )

]
, c2

0 =
gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1

; (2.7)

as kh1 → 0 and kh2 = O(1) (deep water),

c = c0

[
1− 1

2

(
ρ2

ρ1

)
kh1 coth kh2 + O(k2h2

1)

]
, c2

0 = gh1

(
ρ2

ρ1

− 1

)
; (2.8)

and, as kh1 → 0 and kh2 →∞ (infinitely deep water),

c = c0

[
1− 1

2

(
ρ2

ρ1

)
|k|h1 + O(k2h2

1)

]
, c2

0 = gh1

(
ρ2

ρ1

− 1

)
. (2.9)

These different linear dispersion relations result in different linear dispersive terms in
weakly nonlinear models such as the KdV, ILW and BO equations for shallow, deep
and infinitely deep water configurations, respectively.

3. Shallow water configuration
3.1. Fully nonlinear model

From the assumption that the thickness of each fluid layer is much smaller than the
characteristic wavelength, the continuity equation (2.1) yields the following scaling
relation between ui and wi:

wi/ui = O(hi/L) = O(ε)� 1, (3.1)

where L is a typical wavelength. For finite-amplitude waves, we also assume that

ui/U0 = O(ζ/hi) = O(1), (3.2)

where U0 is a characteristic speed chosen as U0 = (gh1)
1/2. Based on the scalings in

(3.1)–(3.2), we non-dimensionalize all physical variables as

x = Lx∗, z = h1z
∗, t = (L/U0)t

∗,
ζ = h1ζ

∗, pi = (ρ1U
2
0 )p∗i , ui = U0u

∗
i , wi = εU0w

∗
i ,

}
(3.3)

and assume that all variables adorned with asterisks are O(1) in ε.
We focus on the upper fluid first; the analysis for the lower fluid follows along

similar lines. By integrating (2.1)–(2.2) for i = 1 across the upper-fluid layer (ζ 6 z 6 1)
and imposing the boundary conditions (2.4)–(2.5), we obtain the layer-mean equations
for the upper fluid (see e.g. Wu 1981 or Camassa & Levermore 1997),

η1t + (η1u1)x = 0, η1 = 1− ζ, (3.4)

(η1u1)t + (η1u1u1)x = −η1p1x, (3.5)
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where the layer-mean quantity f̄ of any function f(x, z, t) is defined as

f̄(x, t) =
1

η1

∫ 1

ζ

f(x, z, t)dz. (3.6)

and we have dropped the asterisks for dimensionless variables. The quantities u1u1 and
p1x prevent closure of the system of layer-mean equations (3.4)–(3.5). The following
analysis will therefore focus on expressing these quantities in terms of the two
unknowns ζ and u1.

From (3.3), the vertical momentum equation (2.3) for the upper fluid can be written
as

p1z = −1− ε2[w1t + u1w1x + w1w1z]. (3.7)

Hence, we can seek an asymptotic expansion of f = (u1, w1, p1) in powers of ε2,

f(x, z, t) = f(0) + ε2f(1) + O(ε4), (3.8)

where f(m) = O(1) for m = 0, 1, . . . .
From (3.7)–(3.8) and by imposing the pressure continuity across the interface given

by (2.4), the leading-order pressure p(0)
1 is

p
(0)
1 = −(z − ζ) + P (x, t), (3.9)

where P (x, t) = p2(x, ζ, t) is the pressure at the interface. By substituting (3.8)–(3.9)
into (2.2), one obtains

u
(0)
1 = u

(0)
1 (x, t) if u(0)

1z = 0 at t = 0. (3.10)

Notice that condition (3.10) is automatically satisfied if we assume that the flow is
initially irrotational (Choi & Camassa 1996a). From (2.1) for i = 1, we can now
obtain the leading-order vertical velocity w

(0)
1 that satisfies the kinematic boundary

condition (2.4) at the interface:

w
(0)
1 = −(u(0)

1x )(z − ζ) + D1ζ, (3.11)

where Di stands for the material derivative,

Di = ∂t + u
(0)
i ∂x. (3.12)

From (3.8) and (3.10), it is easy to show that

η1u1u1 = η1u1 u1 + O(ε4), (3.13)

so that the layer-mean horizontal momentum equation (3.5) in dimensionless form
becomes

u1t + u1u1x = −p1x + O(ε4). (3.14)

At O(ε2), from (3.7)–(3.8) and (3.11), the equation for p(1)
1 is

p
(1)
1z = −[w(0)

1t + u
(0)
1 w

(0)
1x + w

(0)
1 w

(0)
1z

]
= G1(x, t)(z − ζ)− η1G1(x, t). (3.15)

In this equation for p(1)
1 , G1 denotes

G1(x, t) = u1xt + u1u1xx − (u1x)
2 =

(D2
1ζ)

η1

+ O(ε2), (3.16)
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where we have used (3.4) and u1 = u
(0)
1 + O(ε2) for the last equality. After integrat-

ing (3.15) with respect to z and imposing the dynamic boundary condition in (2.4),
we obtain p(1)

1 :

p
(1)
1 (x, z, t) = 1

2
G1(x, t)(z − ζ)2 − η1G1(x, t)(z − ζ). (3.17)

From (3.9) and (3.17), the right-hand-side term of the horizontal momentum equa-
tion (3.14) is therefore

p1x =
(
p

(0)
1x + ε2p

(1)
1x

)
+ O(ε4) = ζx + Px − ε2

η1

(
1
3
η3

1G1

)
x

+ O(ε4). (3.18)

After substituting (3.18) for p1x, (3.4) and (3.14) provide the desired set of equations
governing the motion of the upper fluid.

Rather than repeating the same procedure for the lower fluid layer, we simply
notice that, by replacing (ζ, g) by (−ζ, −g) and the subscript 1 by 2, we can obtain a
set of equations for the lower fluid directly from (3.4) and (3.14). The final result for
the complete set of equations for the four unknowns (ζ, u1, u2, P ) is, in dimensional
form,

η1t + (η1u1)x = 0, η1 = h1 − ζ, (3.19)

η2t + (η2u2)x = 0, η2 = h2 + ζ, (3.20)

u1t + u1u1x + gζx = −Px
ρ1

+
1

η1

(
1
3
η3

1G1

)
x

+ O(ε4), (3.21)

u2t + u2u2x + gζx = −Px
ρ2

+
1

η2

(
1
3
η3

2G2

)
x

+ O(ε4), (3.22)

with G1 given by (3.16) and

u2(x, t) =
1

η2

∫ ζ

−h2

u2(x, z, t) dz, G2(x, t) = u2xt + u2u2xx − (u2x)
2 = − (D2

2ζ)

η2

. (3.23)

Notice that the two kinematic equations, (3.19) and (3.20), are exact while the dynamic
equations, (3.21) and (3.22), have an error of O(ε4).

The fact that internal waves in this system have ‘two degrees of freedom’ (left- and
right-going waves) suggests that (3.19)–(3.22) should reduce to a second-order system
of two evolution equations. By eliminating ζ from (3.19)–(3.20) and imposing zero
boundary conditions at infinity, u2 can be expressed in terms of u1 as

u2 = −
(
η1

η2

)
u1. (3.24)

After substituting (3.22) into (3.21) for Px and using (3.24) for u2, (3.19) and (3.21)
become a closed system of equations for ζ and u1.

If the upper fluid layer is neglected and P is regarded as the external pressure
applied to the free surface, (3.20) and (3.22) are the complete set of evolution
equations for a homogeneous layer, originally derived by Green & Naghdi (1976) by
using the so-called ‘director-sheet’ theory. Therefore (3.19)–(3.22) can be regarded as
the (coupled) Green–Naghdi (GN) equations for one-dimensional internal waves in a
two-fluid system. This set of equations can also be obtained as in Liska, Margolin &
Wendroff (1995) by assuming a priori that wi is a linear function of z directly in the
governing equations of § 2.
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The system (3.19)–(3.22) has the following four conserved quantities:

dM
dt
≡ d

dt

∫
ζ dx = 0, (3.25)

dI
dt
≡ d

dt

∫ (
ui + 1

6
η2
i uixx

)
dx = 0 (i = 1, 2), (3.26)

dP
dt
≡ d

dt

∫
(ρ1η2u1 + ρ2η1u2) dx = 0, (3.27)

dE
dt
≡ d

dt

[∫
1
2
(ρ2 − ρ1)gζ

2 dx+

2∑
i=1

∫
1
2
ρi
(
ηiu

2
i + 1

3
η3
i u

2
ix

)
dx

]
= 0, (3.28)

which correspond to conservation laws for mass, irrotationality, horizontal momen-
tum, and energy. In fact, the second conservation law (3.26) is related to the ‘trivial’
conservation law,

d

dt

∫
ui dx = 0, (3.29)

which, after imposing the condition that the flow has zero horizontal component of
vorticity wix = uiz (i.e. the flow is irrotational in the two-dimensional set-up of this
paper), follows easily from the horizontal momentum equation of the Euler system
(2.2) (see Camassa & Levermore 1997 for more details on this point). We also remark
that the energy conservation law (3.28) can be placed within a Hamiltonian structure
that generalizes that of a single-layer Green–Naghdi model (cf. Camassa, Holm &
Levermore 1996).

One final remark on the structure of the coupled GN system is in order. As pointed
out by Liska et al. (1995), the dispersion relation obtained from (3.19)–(3.22) by
linearizing around a state in which one of the two fluids moves with constant velocity
with respect to the other (always assumed to be at rest by Galileian invariance) is
ill posed, i.e. unstable to all sufficiently large-wavenumber modes. This reflects the
behaviour of the original Euler equation under the same circumstances (i.e. in the
absence of surface tension between the two fluids, see e.g. Whitham 1974, p. 445). For
the finite-amplitude wave motion modelled by (3.19)–(3.22), this ill-posedness could
result in an instability mechanism for the waves in certain regions of the interface
(see e.g. the internal bore solutions discussed in §§ 3.3 and 3.4). While the implications
of this fact deserve further study, it is remarkable that the model, though outside its
asymptotic range of validity, still manages to capture the legacy of a basic feature of
the original Euler equations.

Next, by assuming weak nonlinearity and unidirectional wave propagation, we
show that system (3.19)–(3.22) includes all the known weakly nonlinear evolution
equations.

3.2. Weakly nonlinear models

For weakly nonlinear waves, we replace the scaling (3.2) by

ui/U0 = O(ζ/hi) = O(α) = O(ε2). (3.30)

Under this assumption, equations (3.19)–(3.22) become the Boussinesq equations for
internal waves in a two-fluid system, because the nonlinear dispersive terms of O(ε2)
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in the right-hand sides of (3.21)–(3.22) reduce to

1

ηi

(
1
3
η3
i Gi
)
x
→ 1

3
h2
i uixxt. (3.31)

Furthermore, from (3.24), we have

u2 = −h1 − ζ
h2 + ζ

u1 =

[
−h1

h2

+
h1 + h2

h2

(
ζ

h2

)
+ O(α2)

]
u1, (3.32)

and, by eliminating P from (3.21) and (3.22) and using (3.32) for u2, a set of equations
for ζ and u1 is obtained:

ζt − [(h1 − ζ)u1]x = 0, (3.33)

u1t + b1u1u1x + (b2 + b3ζ) ζx = b4u1xxt + O(αε4, α2ε2), (3.34)

where the bi are given by

b1 =
ρ1h

2
2 − ρ2h1h2 − 2ρ2h

2
1

ρ1h
2
2 + ρ2h1h2

, b2 =
gh2(ρ1 − ρ2)

ρ1h2 + ρ2h1

, (3.35)

b3 =
gρ2(ρ1 − ρ2)(h

2
1 + h1h2)

(ρ1h2 + ρ2h1)2
, b4 =

1

3

ρ1h
2
1h2 + ρ2h1h

2
2

ρ1h2 + ρ2h1

. (3.36)

Notice that compared with the classical Boussinesq equations for the case of a
homogeneous layer (see Whitham 1974, p. 465), the second equation (3.34) contains
the extra quadratic term ζζx.

For unidirectional waves, (3.33)–(3.34) can be further simplified, resulting in the
KdV equation for ζ,

ζt + c0ζx + c1ζζx + c2ζxxx = 0, (3.37)

where

c2
0 =

gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1

, c1 = −3c0

2

ρ1h
2
2 − ρ2h

2
1

ρ1h1h
2
2 + ρ2h

2
1h2

, c2 =
c0

6

ρ1h
2
1h2 + ρ2h1h

2
2

ρ1h2 + ρ2h1

.

(3.38)

The solitary wave solution is given by

ζKdV (X) = a sech2(X/λKdV ), X = x− ct, (3.39)

with

(λKdV )2 =
12c2

ac1

, c = c0 +
c1

3
a. (3.40)

Notice that the coefficient c1 of the nonlinear term in (3.38) vanishes at the critical
depth ratio (

h1/h2

)
c

= (ρ1/ρ2)
1/2, (3.41)

signalling that near this depth ratio nonlinear effects enter the dynamics of internal
long waves at higher order in the (small) amplitude parameter α. In fact, when the
depth ratio is close to the critical value (3.41), an appropriate weakly nonlinear model
is provided by the modified KdV equation, where the nonlinear term is cubic in the
interface variable ζ (see e.g. Funakoshi & Oikawa 1986, and the Appendix). Also
notice that if h1/h2 is greater or smaller than the critical value, the polarity of solitary
waves is positive or negative, respectively.
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For small-amplitude waves, the linear dispersion relation for the bidirectional model
(3.33)–(3.34) is

c2 =
−b2h1

1 + b4k2
, (3.42)

which reduces, for small kh1, to that for the KdV equation (2.7).

3.3. Travelling wave solutions

To look for waves of permanent form travelling from left to right with constant speed
c, we make the ansatz

ζ(x, t) = ζ(X), ui(x, t) = ui(X) , X = x− ct . (3.43)

Putting this into (3.19)–(3.20) and integrating once with respect to X gives

ui = c

(
1− hi

ηi

)
, (3.44)

where we have assumed the asymptotic behaviour ηi → hi as |X| → ∞. By eliminating
P from (3.21)–(3.22) and using (3.43), we have

K[ζ]ζX ≡ ρ1(−c+ u1)u1X − ρ2(−c+ u2)u2X − g(ρ2 − ρ1)ζX

=
ρ1

η1

(
1
3
η3

1G1

)
X
− ρ2

η2

(
1
3
η3

2G2

)
X
. (3.45)

Substituting (3.44) for ui into (3.45) yields K[ζ] and Gi in terms of ηi, i = 1, 2,
respectively:

K[ζ] =
ρ1c

2h2
1

η3
1

+
ρ2c

2h2
2

η3
2

− g(ρ2 − ρ1), (3.46)

and

Gi = −c
2h2
i

η2
i

(
ηiX
ηi

)
X

. (3.47)

Integrating (3.45) once with respect to X yields, after imposing ηiX, ηiXX → 0 as
X → −∞,

− 1
3
ρ1c

2h2
1

(
η1XX

η1

− 1

2

η1X
2

η2
1

)
+ 1

3
ρ2c

2h2
2

(
η2XX

η2

− 1

2

η2X
2

η2
2

)
=

∫ ζ

0

K[ζ] dζ, (3.48)

where we have used dζ = ζXdX.
We can also integrate the same equation (3.45), after multiplying by η1, to obtain

− 1
3
ρ1c

2h2
1

(
η1XX − η1X

2

η1

)
− 1

3
ρ2c

2h2
2

(
η2XX − η2X

2

η2

)
+1

3
ρ2c

2h2
2(h1 + h2)

(
η2XX

η2

− 1

2

η2X
2

η2
2

)
=

∫ ζ

0

η1K[ζ] dζ, (3.49)

where we have used η1 = (h1 + h2) − η2. The fact that there exist two different ways
of integrating (3.45) leading to (3.48)–(3.49) is a reflection of the existence of the two
conservation laws (3.26) and (3.27). (The mass conservation law (3.25) allows the first
integration leading to (3.44).) Notice that energy conservation (3.28) for travelling
waves holds under (3.26) (which is related to the Bernoulli equation, see § 3.4).

After eliminating ζXX from (3.48)–(3.49) by multiplying (3.48) by η1 and subtracting
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from (3.49), we obtain the following nonlinear ordinary differential equation for ζ:

(ζX)2 =
3ζ2[ρ1c

2η2 + ρ2c
2η1 − g(ρ2 − ρ1)η1η2]

ρ1c2h2
1η2 + ρ2c2h2

2η1

, (3.50)

which can be rewritten as

(ζX)2 =

 3g(ρ2 − ρ1)

c2

(
ρ1h

2
1 − ρ2h

2
2

)
 ζ2(ζ − a−)(ζ − a+)

(ζ − a∗) . (3.51)

In (3.51), a∗ is given by

a∗ = −h1h2(ρ1h1 + ρ2h2)

ρ1h
2
1 − ρ2h

2
2

, (3.52)

and a± are the two roots of a quadratic equation,

ζ2 + q1ζ + q2 = 0, (3.53)

with q1 and q2 defined by

q1 = −c
2

g
− h1 + h2, q2 = h1h2

(
c2

c2
0

− 1

)
. (3.54)

In this expression, c0 is the linear long-wave speed given by (3.38).
We remark that the same equation (3.50) has been derived by Miyata (1985) by

using conservation laws for steady solitary waves in shallow water. Therefore Miyata’s
theory is a steady version of our coupled GN equations (3.19)–(3.22).

For smooth solitary wave solutions to exist, the right-hand side of (3.51) has to
be bounded and non-negative for ζ between ζ = 0 and one of the two real roots
of (3.53). The boundedness is ensured by the fact that a∗ is always less than −h2

or larger than h1, as follows easily from expression (3.52), so that the denominator
of (3.51) can never vanish within the physical range of ζ. To study the sign of the
right-hand side of (3.51), it is necessary to distinguish between ρ1h

2
1 − ρ2h

2
2 > 0 (for

which the ratio h1/h2 is above critical), and ρ1h
2
1 − ρ2h

2
2 < 0 (h1/h2 below critical).

(Recall that it is always ρ2 − ρ1 > 0 for stable stratification.)
If ρ1h

2
1 − ρ2h

2
2 > 0, i.e. h1/h2 > (ρ2/ρ1)

1/2, then a∗ < −h2 and the product (ζ −
a−)(ζ − a+) must be non-negative, i.e. ζ < a− or ζ > a+. Since the origin ζ = 0 must
belong to the range of admissible ζ, it follows that the two real roots a± of (3.53),

a± = − 1
2
q1 ± ( 1

4
q2

1 − q2

)1/2
, (3.55)

must have the same sign. This occurs only for q2 positive, which, from (3.54), implies
that the wave speed c must be supercritical, or

c2 > c2
0. (3.56)

According to whether a− > 0 or a+ < 0, the solitary wave will be a wave of elevation
or depression, respectively. It is easy to see that with ρ1h

2
1−ρ2h

2
2 > 0, the supercritical

speed constraint (3.56) implies q1 < 0 and a− > 0, so that in this case the solitary
wave is one of elevation.

The opposite case ρ1h
2
1 − ρ2h

2
2 < 0 can be treated similarly. Under this condition,

both the factor in square brackets and the denominator in (3.51) are negative (since
a∗ > h1 > 0), and solitary waves of both polarities are possible. To summarize,
we have the following three possibilities for solitary waves in the shallow water
configuration:
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(i)

(ii) (iii)

f2
X

a
*

0 a– a+ f

f2
X

0 a
*

a– a+ f

f2
X

a– a
*

0 fa+

Figure 2. The right-hand side of (3.51) shows that solitary wave solutions exist only in shaded
areas. (i) (h1/h2) > (ρ2/ρ1)1/2 (a∗ < 0 6 ζ 6 a− < a+), (ii) (ρ1/ρ2)1/2 < (h1/h2) < (ρ2/ρ1)1/2

(0 6 ζ 6 a− < a+ < a∗), or (iii) (h1/h2) < (ρ1/ρ2)1/2 (a− < a+ 6 ζ 6 0 < a∗).

Case (i): h1/h2 > (ρ2/ρ1)
1/2. Then q1 < 0 ⇒ a− > 0, the solitary wave is of

elevation.
Case (ii): (ρ1/ρ2)

1/2 < h1/h2 < (ρ2/ρ1)
1/2. Then q1 < 0 ⇒ a− > 0 for a wave of

elevation.
Case (iii): h1/h2 < (ρ1/ρ2)

1/2. Then q1 > 0⇒ a+ < 0 and the wave is of depression.
These conclusions for the existence of a solitary wave and its polarity are illustrated

in figure 2.
Notice that the fully nonlinear theory once again leads to ζ = 0, i.e. non-existence

of solitary waves, as the solution for the critical depth ratio h1/h2 = (ρ1/ρ2)
1/2. Of the

other limiting cases, when the inequalities above are replaced by equalities, the only
interesting one occurs when the two roots a± coincide (at q2 = q2

1/4). In this case
the travelling wave equation (3.51) admits a heteroclinic, rather than a homoclinic,
solution which connects the fixed points ζ = 0 to ζ = −q1/2. As a− → a+, the solitary
wave solution becomes broader and broader, while its amplitude tends to the limit
ζ = −q1/2 ≡ am, which is reached just when the solitary wave degenerates into a
front-like solution. We will come back to this interesting limit at the end of the section.

The phase-space analysis of equation (3.51) succeeds in giving all the qualitative
information and classification for the solitary wave solutions supported by the coupled
GN system (3.19)–(3.22). Of course, quantitative information can also be obtained
by (3.53) (or (3.55)) and by quadratures of (3.51). In the following, whenever applicable,
we will include in our examples the density ratio ρ1/ρ2 = 0.63 and depth ratio h1/h2 =
5.09, used by Koop & Butler (1981) in their shallow water configuration experiments.

We first look at wave speed vs. wave amplitude. Equation (3.53) shows that the c
can be written in terms of a as

c2

c2
0

=
(h1 − a)(h2 + a)

h1h2 − (c2
0/g) a

. (3.57)
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(a) (b)

0 0.5 1.0 1.5 2.0

a/h2

c
c0

Figure 3. Wave speed c versus wave amplitude a for ρ1/ρ2 = 0.63: ——–, fully nonlinear theory
given by (3.57); – – –, weakly nonlinear (KdV) theory given by (3.40). (a) h1/h2 = 0.2, (b) h1/h2 = 5.
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0.25

2.5 5.0 12.5 15.0 17.5 20.07.5 10.0

x/h2

f
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Figure 4. Solitary wave solutions (——) of (3.51) for ρ1/ρ2 = 0.63, h1/h2 = 5.09 and a/h2 =(0.5,
1, 1.5, 2) compared with KdV solitary waves (– – –) of the same amplitude given by (3.39). Here
and in the following figure of wave profiles, the waves are symmetric with respect to reflections
X → −X and only half of the wave profile is shown.

As figure 3 shows, for ρ1/ρ2 = 0.63 and h1/h2 = 0.2 and 5, the solitary wave speed
given by (3.57) increases with wave amplitude at a rate much slower than that of the
weakly nonlinear theory given by (3.40).

Integration of (3.51) can be carried out, resulting in a wave form ζ(X) expressed
implicitly by a relation X = Xs(ζ). The function Xs is a combination of elliptic
integrals, and as such is not particularly informative. However, explicit knowledge
of Xs does allow wave profiles to be readily obtained by plotting routines. We only
report here the result pertaining to Koop & Butler’s configuration, i.e. ρ1h

2
1−ρ2h

2
2 > 0,

whereby

κX =
2

(a+ − a∗)1/2

[(
a+ − a∗
a+

)
F(ϕ,m1)− a∗(a+ − a−)

a+a−
Π(ϕ, µ1, m1)

]
. (3.58)

Here

sinϕ ≡
[

(a+ − a∗)(a− − ζ)
(a− − a∗)(a+ − ζ)

]1/2

, m2
1 ≡ a− − a∗

a+ − a∗ , µ1 ≡ a+

a−
m2

1 , (3.59)
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the coefficient κ is

κ =

∣∣∣∣∣ 3g(ρ2 − ρ1)

c2
(
ρ1h

2
1 − ρ2h

2
2

)∣∣∣∣∣
1/2

, (3.60)

and F and Π stand for elliptic integrals of first and third kind, respectively (Byrd &
Friedman 1954). Notice that the third-kind elliptic integral Π , through its logarithmic
divergence in the limit ζ → 0, is responsible for the exponential decay of the solitary
waves as |X| → ∞. Several plots of the solution for different amplitudes are presented
in figure 4, where they are compared with the corresponding amplitude KdV solu-
tions (3.39). As one can see from the figure, finite-amplitude solitary waves tend to
be considerably wider than their weakly nonlinear counterparts.

The solitary waves generated in the experiments by Koop & Butler (1981) exhibited
a similar trend between wave amplitude and wavelength. To quantify this trend, Koop
& Butler introduced an integral measure of the effective wavelength, λI , which they
defined as

λI ≡
∣∣∣∣1a
∫ ∞

0

ζ(X) dX

∣∣∣∣ =

∣∣∣∣1a
∫ a

0

ζ(X)

(dζ/dX)
dζ

∣∣∣∣ . (3.61)

By substituting (3.51) for ζX into (3.61), we can compute λI for the solitary wave of
the GN model in terms of elliptic integrals (Byrd & Friedman 1954). The result, for
all the combinations of density and depth ratios in cases (i)–(iii), is, respectively,

λI =
2

κa−

[
(a+ − a∗)1/2

(
F(δ1, m1)− E(δ1, m1)

)
+

(
a−|a∗|
a+

)1/2
]
,

for
h1

h2

>

(
ρ2

ρ1

)1/2

, (3.62)

λI =
2

κa−

[
(a+ − a∗)1/2

(
F(δ2, m2)− E(δ2, m2)

)
+ (a+ − a−)

(
a∗
a−a+

)1/2
]
,

for

(
ρ1

ρ2

)1/2

<
h1

h2

<

(
ρ2

ρ1

)1/2

, (3.63)

λI =
2

κa+

[(
a∗a+

a−

)1/2

− (a∗ − a−)1/2
(
F(δ3, m3)− E(δ3, m3)

) ]
,

for
h1

h2

<

(
ρ1

ρ2

)1/2

, (3.64)

where F and E are elliptic integrals of the first and second kind (Byrd & Friedman
1954). Here the parameters δi, i = 1, 2, 3 and mi, i = 1, 2, (cf. (3.59)) are, respectively,

sin δ1 =

[
a−(a+ − a∗)
a+(a− − a∗)

]1/2

, sin δ2 =

(
a−
a+

)1/2

, sin δ3 =

[
a+(a− − a∗)
a−(a+ − a∗)

]1/2

, (3.65)

m2
1 =

a− − a∗
a+ − a∗ , m2

2 =
a∗ − a+

a∗ − a− , (3.66)

and the coefficient κ is defined in (3.60).
These expressions for λI should be compared with that for KdV solitary waves,
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Figure 5. Effective wavelength λI versus wave amplitude a curves compared with experimental data
(symbols, reproduced with permission from Cambridge University Press) by Koop & Butler (1981)
for ρ1/ρ2 = 0.63 and h1/h2 = 5.09 : ——, fully nonlinear theory given by (3.62); – – –, weakly
nonlinear (KdV) theory given by (3.67); · · · • · · ·, numerical solutions of the full Euler equations by
Grue et al. (1997).

where λI is, from (3.38),

λI = λKdV =

[
4h2

1h
2
2(ρ1h1 + ρ2h2)

3a(ρ2h
2
1 − ρ1h

2
2)

]1/2

. (3.67)

We can also compare these results for λI with those obtained experimentally
by Koop & Butler (1981) within their shallow water configuration, h1/h2 = 5.09.†
Figure 5 shows the experimental data (symbols) vs. theoretical curves from the
fully nonlinear (coupled GN) and weakly nonlinear (KdV) theories, equations (3.62)
and (3.67), respectively. For α = a/h2 < 0.05, the experimental data lie a little below
both theoretical curves, while the data show good agreement with the theoretical
predictions for 0.05 < α < 0.2.

Notice that both the weakly nonlinear and the present fully nonlinear theories are
asymptotic approximations to the full Euler equations, and their solutions should
approach those of the Euler system as the amplitude a decreases and the effective
wavelength λI increases, which occurs for the solitary wave solutions of both models.

† Segur & Hammack (1982) examined whether this depth ratio, γ = 5.09, might be large enough
to fall within the domain of asymptotic validity (for small α) of the ILW model. Their answer
is negative, a situation only partially remedied by the inclusion of the next higher-order terms in
the ILW asymptotic expansion. For more details on higher-order weakly nonlinear unidirectional
models, see the Appendix.
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Figure 6. Comparison of solitary wave solutions (——) of (3.51) for ρ1/ρ2 = 0.997, h2/h1 = 3 and
a/h1 = −0.8 compared with KdV solitary waves (– – –) of the same amplitude given by (3.39) and
the exact solution of the Euler equations (— – —) computed by Evans & Ford (1996).

Thus the disagreement with the experimental data for α < 0.05 could be attributed to
the inadequacy, in these regimes, of the Euler system itself. As pointed out by Koop
& Butler, for very small waves viscous effects might have to be included.

For larger amplitude of α > 0.2, the experimental data lie in between the fully
nonlinear and weakly nonlinear results given by (3.62) and (3.67), respectively. It is a
little surprising to see that the prediction of the present fully nonlinear theory is as
poor as that of the KdV theory based on the weakly nonlinear assumption, though
the fully nonlinear model shows the right trend of larger λI at given a when compared
with KdV.

In order to investigate whether the cause of the discrepancy between the fully
nonlinear theory and the experiment by Koop & Butler lies in the approximation of
long waves we used to derive the model, we also have compared the present theory
with their counterparts from computations using the full Euler equations. As shown in
figure 5, the fully nonlinear theory overestimates λI for intermediate wave amplitudes
compared with numerical solutions of Grue et al. (1997), while both theories agree
well for large wave amplitudes. Notice that the experimental data by Koop & Butler
lie below both theoretical curves. Next we show in figure 6 a plot of our solution vs.
that of the solitary wave solution computed numerically by Evans & Ford (1996),
for the case (lower layer deeper than the upper layer) h1/h2 = 1

3
and ρ1/ρ2 = 0.997,

i.e. Case (iii) above. The two wave forms for a/h1 = −0.8 are almost identical.
Moreover, the wave speed c/c0 ≈ 1.1486 from (3.57) is in excellent agreement with
their computed value c/c0 ≈ 1.1485. Finally, we remark that the maximum values of
wave amplitude (and wave speed) at which the solitary wave degenerates into a front
match well with those obtained numerically by Evans & Ford (1996).

Therefore, it seems safe to conclude that the discrepancy between the present theory
and the experiment depicted by figure 5 when α > 0.2 should not be attributed to the
long-wave approximation in the model, and it is due to other, at present not easily
identifiable, causes. A satisfactory resolution of this issue might have to wait for
experimental data in the (extensive) regime of larger waves 0.8 < α < αm = am/h2 ≈
2.4, to use the shallow water parameters of Koop & Butler’s experiments.

In the remainder of this section, we focus on the limiting case a→ am of the highest
solitary wave, where, as the phase-space analysis of (3.51) shows, it degenerates into
a front-like, or internal bore, solution.



Fully nonlinear internal waves 17

5

4

3

2

1

0

0 2 4 6 8 10

1.8

1.6

1.4

1.2

1.0
0 2 4 6 8 10

h1/h2h1/h2

am

h2

cm
c0

Figure 7. Highest wave amplitude and its speed given by (3.68)–(3.69) for ρ1/ρ2 = 0.63 and
varying h1/h2.
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Figure 8. A front solution of maximum wave amplitude for ρ1/ρ2 = 0.63 and h1/h2 = 5.09.

From (3.55) and (3.57), the amplitude and speed of the highest travelling waves
are, for given hi and ρi, i = 1, 2,

am =
h1 − h2(ρ1/ρ2)

1/2

1 + (ρ1/ρ2)1/2
, (3.68)

c2
m = g(h1 + h2)

1− (ρ1/ρ2)
1/2

1 + (ρ1/ρ2)1/2
. (3.69)

Beyond this maximum wave amplitude am, no solitary wave solution exists. From
(3.68), it is interesting to notice that am vanishes at the same critical depth ratio as
(3.41) found from the weakly nonlinear analysis. For ρ1/ρ2 = 0.63 which is the density
ratio in the experiment of Koop & Butler (1981), (h1/h2)c ≈ 0.79 and figure 7 shows
am and cm for varying h1/h2.

Equation (3.51) at the highest wave of amplitude am integrates easily in terms of
elementary functions only. The wave profile in this limiting situation is, for the three
cases (i)–(iii) respectively,

amκmX =



Xf(ζ, am, a∗)−Xf(ζ0, 0, a∗) for (h1/h2) > (ρ2/ρ1)
1/2,

Xf(−ζ,−am,−a∗)−Xf(−ζ0, 0,−a∗)
for (ρ1/ρ2)

1/2 < (h1/h2) < (ρ2/ρ1)
1/2,

−Xf(−ζ,−am,−a∗) +Xf(−ζ0, 0,−a∗) for (h1/h2) < (ρ1/ρ2)
1/2,

(3.70)
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Figure 9. Steady flow in a frame moving with a left-going front.

where ζ0 ≡ ζ(X = 0) = am/2,

κm =

∣∣∣∣ 3g(ρ2 − ρ1)

c2
m(ρ1h

2
1 − ρ2h

2
2)

∣∣∣∣1/2 , (3.71)

and the function Xf is

Xf(x, y, z) = (y − z)1/2 log
(x− z)1/2 + (y − z)1/2

(x− z)1/2 − (y − z)1/2
− (−z)1/2 log

(x− z)1/2 + (−z)1/2

(x− z)1/2 − (−z)1/2
.

(3.72)

As figure 8 shows, the limiting wave form is a front slowly varying from 0 to am.
We remark that for the case of a homogeneous layer, the analogue of the present

fully nonlinear model is offered by the GN system given by (3.20) and (3.22) with
P = 0. Its solitary wave solutions are

ζ(X) = a sech2(κ1X), κ2
1 =

3a

4(1 + a)
, c2 = 1 + a , (3.73)

and it is interesting to notice that no limiting wave amplitude exists in this case.
Because we have not imposed any assumption on the magnitude of the wave

amplitude in order to derive our long-wave model, and since the solution (3.70)–
(3.72) is consistent with the long-wave assumption (3.1), it is natural to expect that a
similar front solution exists for the full Euler system. In fact, this was demonstrated
by Funakoshi & Oikawa (1986), who also used their proof to validate their numerical
solutions. For completeness, we now come back to the existence proof of Euler front
solutions (rederiving the result of Funakoshi & Oikawa 1986) and compare these to
the highest wave solutions of the present long-wave model.

3.4. Internal bore: exact theory

We assume the set-up illustrated in figure 9 for an internal bore moving from right
to left at constant speed c into a two-layer stratified fluid at rest at x = −∞. Thus,
in a frame moving with such a left-going front of speed c, the velocity at x = −∞
is c in both fluids, i.e. u1 = u2 = c. On the other hand, the velocity at x = ∞ can be
expected to be different, say u′1 (u′2), in an upper (lower) fluid layer whose thickness
is h′1 (h′2). The question of existence of front-like solutions is then equivalent to that
of finding c, u′i and h′i for given ρi and hi, i = 1, 2, such that all three basic physical
conservation laws of mass, momentum and energy hold.

Mass conservation in each fluid implies

ch1 = u′1h
′
1, ch2 = u′2h

′
2, (3.74)
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where h′1 and h′2 have to satisfy the geometric constraint

h1 + h2 = h′1 + h′2. (3.75)

From momentum conservation, the increase of horizontal momentum by momentum
flux has to be balanced by the force applied on the boundaries at x = ±∞. Thus,

ρ1h1c
2 + ρ2h2c

2 − ρ1h
′
1u
′
1

2 − ρ2h
′
2u
′
2

2

=

∫ h′1

h1−h′1
p1 dz +

∫ h′2−h2

−h′2
p2 dz −

∫ h1

0

p1 dz −
∫ 0

−h2

p2 dz. (3.76)

The pressure pi can be obtained from the Bernoulli equation,

pi + 1
2
ρi(u

2
i + v2

i ) + ρigz = Bi, (3.77)

where the Bernoulli constants Bi are related, by imposing the pressure continuity
across the interface at x = −∞, as

B1 − B2 = 1
2
(ρ1 − ρ2)c

2. (3.78)

After substituting (3.74)–(3.75) and (3.77) into (3.76), we have

(ρ1h1 + ρ2h2)c
2 − 1

2
ρ1(h1 + h2)c

2 − 1
2
ρ1gh

2
1 + 1

2
ρ2gh

2
2

= 1
2
ρ1h

′
1u
′
1

2
+ 1

2
ρ2h

′
2u
′
2

2 − 1
2
(ρ1 − ρ2)h

′
2c

2

+1
2
ρ1gh

′
1

2 − 1
2
ρ2gh

′
2

2 − ρ1gh1h
′
1 + ρ2gh2h

′
2. (3.79)

Regarding energy conservation, for steady flows it can be replaced by the Bernoulli
theorem. Thus, from the Bernoulli equation (3.77) with (3.78) evaluated at x = ∞, we
can find one extra condition, after imposing pressure continuity at the interface and
substituting (3.74) for u′i:

1
2
ρ1c

2 − 1
2
ρ2c

2 − ρ1gh1 − ρ2gh2 = 1
2
ρ1u

′
1

2 − 1
2
ρ2u

′
2

2 − ρ1gh
′
1 − ρ2gh

′
2. (3.80)

The final result is the five equations in (3.74)–(3.75) and (3.79)–(3.80) for the five
unknowns (c, h′1, h′2, u′1, u′2).

In fact, the approximate theory already contains equations (3.79)–(3.80). These can
be obtained by (3.48)–(3.49) evaluated at X = +∞, after imposing (ηiX, ηiXX) → 0
and ζ → ζ∞ as X → +∞, and using

ζ∞ = h1 − h′1 = h′2 − h2. (3.81)

Moreover, by using (3.74)–(3.75) and (3.81), we can obtain an expression for ζ∞.
Multiplying (3.80) by ζ∞/2 and subtracting from (3.79) yields

ρ1

(h1 − ζ∞)2
=

ρ2

(h2 + ζ∞)2
. (3.82)

The solution of (3.82) is ζ∞ = am, so that c = cm, with am and cm given by (3.68) and
(3.69), respectively. Thus the Euler equations indeed possess an internal bore solution
of the same amplitude and speed as the highest wave amplitude of the long-wave
model. Of course, this does not guarantee that the internal bore solution from the
long-wave model at intermediate x-values approximates closely the corresponding
Euler solutions, though the good agreement with the full Euler computations of
Evans & Ford is certainly encouraging.

We conclude this section with a remark on the case of a homogeneous fluid layer,
where it is well known that front solutions satisfying all three conservation laws are
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impossible. The case of single fluid layer is simply ρ1 = 0. Then the three conservation
laws (3.74), (3.79) and (3.80) are

ch2 = u′2h
′
2, c2h2 − u′22

h′2 = 1
2
g(h′2

2 − h2
2),

1
2
c2 + gh2 = 1

2
u′2

2
+ gh′2, (3.83)

and, for given h2, the only solution is

h′2 = h2, u′2 = c, (3.84)

i.e. a solitary wave rather than a front solution. By only imposing the first two
conservation laws for mass and momentum, we have the shock condition for given
h2 and c (Lamb 1932),

h′2
h2

=
1

2

[
−1 +

(
1 +

8c2

gh2

)1/2
]
. (3.85)

The energy loss that this shock solution implies is then attributed to the effects of
viscosity, which are large due to the turbulent state at the bore’s front.

4. Deep water configuration
4.1. Fully nonlinear model

So far we have concentrated on the shallow water configuration γ = O(1), whereby
propagation of waves in the two-fluid system occurs at a typical wavelength L which
is assumed to be large with respect to the undisturbed thickness of both fluid layers.
We now turn our attention to the deep water configuration, which we take to be a
thin upper layer over a deep layer below, in such a way that

h1/L� 1, h2/L = O(1). (4.1)

From the continuity equation (2.1), we have

w1/u1 = O(h1/L) = O(ε), w2/u2 = O(h2/L) = O(1), (4.2)

and, from the boundary condition (2.4) of continuity of normal velocity at z = ζ, it
follows that

w2/u1 = O(ε), u2/u1 = O(ε) at z = ζ, (4.3)

where we have used ζx = O(h1/L) = O(ε) with the scaling (4.2). Hence, we find that
the correct scaling for long-wave motion in the deep water configuration is

u1/U0 = O(ζ/h1) = O(1), u2/U0 = O(w1/U0) = O(w2/U0) = O(ε). (4.4)

With this in mind, we now proceed to determine asymptotic approximations of the
Euler equations governing the fluid velocities and interface displacements in the upper
and lower fluid.

For the thin upper fluid layer, the scaling in (4.1) and (4.4) is the same as the
one used for the shallow water configuration. Thus, (3.19) and (3.21) are still the
governing equations for ζ and u1:

ζt − [(1− ζ)u1]x = 0, (4.5)

u1t + u1u1x + ζx = −Px + O(ε2). (4.6)

Notice that in (4.6) we do not write explicitly the nonlinear dispersive term of O(ε2)
in (3.21), because the leading-order dispersive effect due to the coupling with the deep
lower fluid now enters at O(ε), as we shall see presently.
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For the lower fluid layer, using the scaling (4.4), we non-dimensionalize all physical
variables,

x = Lx∗, z = Lz∗, t = (L/U0)t
∗,

ζ = h1ζ
∗, p2 = ρ1U

2
0p
∗
2, u2 = εU0u

∗
2, w2 = εU0w

∗
2 , φ = εU0Lφ

∗,

}
(4.7)

where have introduced the velocity potential φ defined by (φx, φz) = (u2, w2), assuming
the flow in the lower fluid to be irrotational. Comparing (4.7) with (3.3) shows that z
is normalized with respect to L since the depth of the lower fluid h2 is much greater
than that of the upper fluid h1, and it is comparable to the typical wavelength L.

The coupling term Px in (4.6) follows from the Bernoulli equation evaluated at the
interface, which can be written, from the Euler equations (2.2)–(2.3), (after dropping
the asterisks) as

εφt + 1
2
ε2
(
φ2
x + φ2

z

)
+ ζ + (ρ1/ρ2)P = C(t), (4.8)

where C(t) is an arbitrary function of time. Then, up to O(ε), the pressure derivative
Px is

Px = −(ρ2/ρ1)
[
ζx + εφxt(x, 0, t)

]
+ O(ε2), (4.9)

where we have used φx(x, εζ, t) = φx(x, 0, t) + O(ε). From (2.1) and (2.4)–(2.5), the
velocity potential φ is a solution of the following boundary value problem:

φxx + φzz = 0 for − h2 6 z 6 εζ(x, t), (4.10)

φz = ζt + εζxφx at z = εζ(x, t), (4.11)

φz = 0 at z = −h2. (4.12)

As equation (4.9) shows, the linear solution for φ is sufficient to determine Px up to
O(ε). Therefore, we first expand (4.11) about z = 0,

φz = ζt + O(ε) at z = 0. (4.13)

After solving (4.10) for −h2 6 z 6 0 with (4.12)–(4.13) via a Fourier transform, we
obtain

φx(x, 0, t) =Tc[φz(x, 0, t)] =Tc[ζt] + O(ε), (4.14)

where the operator Tc is defined by

Tc[f] =
1

2h2

−
∫
f(x′) coth

[
π

2h2

(x′ − x)

]
dx′, (4.15)

and −∫ stands for the integration in the principal value sense. Substituting (4.14) into
(4.9) yields

Px = −(ρ2/ρ1)(ζx + εTc[ζtt]) + O(ε2). (4.16)

Finally, from (4.5)–(4.6), after using (4.16) for Px, we have the complete set of
equations for the displacement of the interface ζ and the depth-mean velocity across
the upper layer u1. In dimensional form, these are

ζt − [(h1 − ζ)u1

]
x

= 0, (4.17)

u1t + u1u1x +

(
1− ρ2

ρ1

)
gζx =

(
ρ2

ρ1

)
Tc

[
ζtt
]
. (4.18)
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System (4.18)–(4.17) takes the slightly more compact form

η1t +
(
η1u1

)
x

= 0, (4.19)

u1t + u1u1x + g

(
ρ2

ρ1

− 1

)
η1x = −

(
ρ2

ρ1

)
Tc

[
η1tt

]
, (4.20)

when using the upper-layer thickness variable η1 ≡ h1 − ζ. In (4.18) or (4.20), the
right-hand-side term should be understood as a shorthand notation, by use of (4.19),
for

Tc

[
ζtt
]

= −Tc

[
η1tt

]
=Tc

[
η1u1

]
xt

=Tc

[− u1

(
η1u1

)
x

+ η1u1t

]
x
, (4.21)

so that only the first time derivative of u1 enters the right-hand side of (4.18) or (4.20).
In the limit of infinitely deep lower fluid (h2 → ∞), the operator Tc becomes the

Hilbert transform H defined by

H[f] ≡ 1

π
−
∫

f(x′)
x′ − xdx′, (4.22)

and (4.17)–(4.18) reduce to the set of equations derived by Choi & Camassa (1996b).
Similarly to the GN equations for the shallow water configuration, the system

(4.17)–(4.18) (or, alternatively, system (4.19)–(4.20)) conserves mass, irrotationality,
momentum and energy defined by

dM
dt
≡ d

dt

∫
ζ dx = 0, (4.23)

dI
dt
≡ d

dt

∫
u1 dx = 0, (4.24)

dP
dt
≡ d

dt

∫ (
ρ1η1u1 + ρ2(h1 − η1)Tc[η1u1]x

)
dx = 0, (4.25)

dE
dt
≡ d

dt

[
1

2

∫
(ρ2 − ρ1)g(h1 − η1)

2 dx+
1

2

∫ (
ρ1η1u

2
1 − ρ2η1u1Tc[η1u1]x

)
dx

]
= 0.

(4.26)

The case of a deep upper layer over a thin lower layer can be readily covered by
making the substitutions

g → −g, ζ → −ζ, (4.27)

and interchanging the subscripts 1 and 2 in the evolution equations (4.17)–(4.18). We
get

ζt +
[
(h2 + ζ)u2

]
x

= 0, (4.28)

u2t + u2u2x +

(
1− ρ1

ρ2

)
gζx = −

(
ρ1

ρ2

)
Tc [ζtt] , (4.29)

where h2 has to be replaced by h1 for the definition of Tc in (4.15).

4.2. Weakly nonlinear models

For weakly nonlinear waves, we impose the additional scaling on the initial conditions

u1/U0 = O(ζ/h1) = O(α), (4.30)
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with α � 1, and assume a balance between nonlinear and dispersive effects such as
α = O(ε). Hence, in this approximation, the nonlinear dispersive term to be dropped
out is Tc[ζu1]xt, and system (4.17)–(4.18) reduces to the evolution equations for
weakly nonlinear waves (Choi & Camassa 1996a):

ζt − [(h1 − ζ)u1

]
x

= 0, (4.31)

u1t + u1u1x +

(
1− ρ2

ρ1

)
gζx =

(
ρ2

ρ1

)
Tc

[
h1u1xt

]
, (4.32)

which is the counterpart of the Boussinesq equations (3.33)–(3.34) for the shallow
water configuration.

For unidirectional waves, (4.31)–(4.32) can be further reduced to the ILW equation
(Joseph 1977; Kubota et al. 1978)

ζt + c0ζx + c1ζζx + c2Tc[ζxx] = 0, (4.33)

where the constants c0, c1 and c2 are

c2
0 = gh1

(
ρ2

ρ1

− 1

)
, c1 = −3c0

2h1

, c2 =
c0ρ2h1

2ρ1

. (4.34)

The same equation holds for u1 at this order of approximation. The ILW equation
admits the one-parameter (β) family of solitary wave solutions (Joseph 1977)

ζILW (X) =
a cos2 β

cos2 β + sinh2(X/λILW )
, X = x− ct, (4.35)

where

a =
4c2

h2c1

β tan β, λILW =
h2

β
, c = c0 − 2c2

h2

β cot(2β), 0 6 β < 1
2
π. (4.36)

As h2 →∞ and β → 1
2
π, (4.35) reduces to the BO solitary wave (Benjamin 1967):

ζBO(X) =
a

1 + (X/λBO)2
, X = x− ct, (4.37)

where

λBO =
4c2

ac1

, c = c0 +
c1

4
a. (4.38)

For a fixed h2, as β → 0, (4.35) becomes the classical KdV solitary wave:

ζKdV (X) = a sech2(X/λKdV ), X = x− ct, (4.39)

where

λ2
KdV =

4h2c2

ac1

, c =

(
c0 − c2

h2

)
+
c1

3
a. (4.40)

The same result expressed by (4.39)–(4.40) follows from (3.39)–(3.40) by taking the
limit of large h2.

For small-amplitude waves, the linear dispersion relation of the bidirectional model
(4.31)–(4.32),

c2 =
gh1 (ρ2 − ρ1)

ρ1 + ρ2(kh1) coth(kh2)
, (4.41)

reduces, by using

Tc[e
ikx] = i coth(kh2) eikx, (4.42)

to that for the ILW in equation (2.8) in the limit of small kh1.
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4.3. Travelling wave solutions

To compare travelling wave solutions with the experiment by Koop & Butler (1981)
for the deep water configuration of thin lower and deep upper fluid layers, we solve
(4.28)–(4.29), non-dimensionalized by h2 and c0 for the interface ζ and velocity u2

variables respectively, with c2
0 ≡ gh2(1− ρ1/ρ2).

For waves of finite amplitude travelling with constant speed c, we assume that

ζ(x, t) = ζ(X), u2(x, t) = u2(X), X = x− ct. (4.43)

After substituting (4.43) into (4.28)–(4.29) and integrating once, we have

−cζ + (1 + ζ)u2 = C1, (4.44)

−cu2 + 1
2
u2

2 + ζ = −c2(ρ1/ρ2)Tc[ζX] + C2, (4.45)

where the integration constants C1 and C2 are taken to be zero, thereby fixing the
mean level. Substituting u2 = cζ/(1+ζ) into (4.45) from (4.44) yields a single equation
for ζ:

G[ζ] ≡ 1

c2
ζ +

1

2

1

(1 + ζ)2
+

(
ρ1

ρ2

)
Tc[ζX]− 1

2
= 0. (4.46)

Because of the non-local operator Tc in (4.46), we have not been able to find closed-
form travelling wave solutions. Therefore, we have resorted to numerics for finding ζ
iteratively via the Newton–Raphson method. First, we assume

ζ(X) = ζ0(X) + ∆(X), (4.47)

where ζ0 is the initial guess (or the result from the previous iteration) and ∆ is the
correction to be found. By substituting (4.47) into (4.46) and linearizing with respect
to ∆, we can find the equation for ∆ as

M[ζ0; c]∆ ≡
[
− 1

c2
+

1

(1 + ζ0)3
−
(
ρ1

ρ2

)
∂XTc

]
∆ = G[ζ0] + O(∆2). (4.48)

With the representation of ∆ in terms of discrete Fourier (cosine) series of N-modes,
(4.48) evaluated at X = Xi = iλ/N (i = 1, . . . , N) equation (4.48) can be written as

Mij ∆j = −Gi, (4.49)

where ∆j = ∆(Xj), Gi = G[ζ0(Xi)] and Mij is an element of N × N matrix resulting
from the discretization of the operator M[ζ0; c].

In order to find Mij and Gi in equation (4.49), we use the pseudo-spectral method
based on the fast Fourier transform (FFT). By taking the wave speed c as a parameter
for given wavelength λ and choosing the solitary wave solution of the ILW equation
given by (4.35) as the initial guess for small c−1, we solve the linear algebraic equation
(4.48) for ∆j iteratively until max(∆j) is smaller than the error bound e. We then
proceed to find the solution for a larger c− 1 by taking the previous results for c− 1
as the initial guess. (An alternative method is to fix the wave amplitude for a given
wavelength.) For travelling waves close to solitary waves, we take a large wavelength
λ (typically λ = 400), with N = 27 = 128 and e = 10−6 for our computations.

We show some typical results in figure 10. As for the shallow water configuration
in § 3.3, the travelling waves of finite amplitude found numerically are wider than the
weakly nonlinear ILW solitary waves of the same speed (4.35). Likewise, the speed of
fully nonlinear waves increases with amplitude at a much slower rate than the weakly
nonlinear ILW theory, as seen in figure 11.
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Figure 10. Solitary wave solutions (——) of (4.46) for ρ1/ρ2 = 0.63, h1/h2 = 35.05 and c/c0 =(1.1,
1.2, 1.3) compared with ILW solitary waves (– – –) of the same wave speed given by (4.35).
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Figure 11. Wave speed c versus wave amplitude a for ρ1/ρ2 = 0.63 and h1/h2 = 35.05: ——,
numerical solutions of (4.46); – – –, weakly nonlinear (ILW) theory given by (4.36).

Similarly to the shallow water case in § 3.3, we also compute the effective wavelength
λI defined by (3.61), in order to compare with the measurements by Koop & Butler
(1981). They used the same fluids as in the shallow water case, while the thickness
ratio for the deep water configuration was set at h1/h2 = 35.05. For weakly nonlinear
theories, λI can easily be found,

λI =

 λKdV KdV theory
h1 cot(h1/λILW ) ILW theory
1
2
πλBO BO theory,

(4.50)

where λKdV , λILW and λBO are defined by (3.67), (4.36) and (4.38), for the KdV, ILW and
BO equations, respectively. Among these three weakly nonlinear equations, the most
appropriate for h1/h2 = 35.05 is expected to be the ILW theory. As figure 12 shows,
the experimental data intersect the curve provided by the ILW model around the
amplitude α = a/h2 = 0.1. For both smaller 0.02 < α < 0.1 and larger 0.15 < α < 0.65
amplitudes the ILW curve fails to represent the data, and clearly exhibit an incorrect
slope throughout the data set. However, the regimes for small-amplitude data should
fulfil the assumptions for the asymptotic derivation of the ILW model based on weak
nonlinearity with the scaling α = O(ε). Hence, the shortcomings already encountered
in the shallow water configuration occur for the deep water case as well, and in a
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Figure 12. Effective wavelength λI versus wave amplitude a curves compared with experimental
data (symbols, reproduced with permission from Cambridge University Press) by Koop & Butler
(1981) for ρ1/ρ2 = 0.63 and h1/h2 = 35.05: ——, fully nonlinear theory given by (4.46); — - —,
KdV model (3.67); — - - —, ILW model (4.35); – – –, BO model (4.37).

more severe form. Once again, the discrepancy between model and data cannot be
immediately attributed to limitations of the ILW model.

Conversely, the observed discrepancy for larger amplitudes waves, with 0.15 < α <
0.65, could indeed signal that the ILW equation is being applied outside its domain
of asymptotic validity, and that a new theory needs to be introduced for this regime.
The agreement between the present theory and experimental data in figure 12 is
remarkably good for 0.2 < α < 0.65, while the curve from recent numerical solutions
of the full Euler equations by Laget & Dias (1997) lies slightly above the experimental
data. From this comparison, we can conclude that the weak nonlinearity assumption
α = O(ε) is the principal cause of discrepancy between theory and experiments in
these regimes.

4.4. Evolution of solitary waves

Owing to their simple forms, the models derived here are much easier to use than the
original Euler equations in studying the evolution of finite-amplitude waves. With the
help of a straightforward numerical scheme, we solve system (4.28)–(4.29) to study
the interaction of solitary waves in deep water.

Throughout our numerical computations, we use the pseudo-spectral method in
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Figure 13. Numerical solutions of (4.28)–(4.29) for the propagation of a single solitary wave of
c/c0 = 1.2.
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Figure 14. Numerical solutions of (4.28)–(4.29) for the fission of a single solitary wave of
c/c0 = 1.2 with u2(x, 0) = 0.

space with a number of Fourier modes N = 28 = 256 and the fourth-order Runge–
Kutta time-integration scheme with increment ∆t = 0.5. For definiteness, we keep the
parameter values of Koop & Butler’s experiment, h1/h2 = 35.05 and ρ1/ρ2 = 0.63.
We first validate the numerical code by taking as initial conditions the solutions for
travelling waves found in § 4.3. Figure 13 confirms that the travelling wave solution of
c/c0 = 1.2 (a/h2 ≈ 0.579) travels with no appreciable change in shape and furthermore
appears to be stable to numerical disturbances.

Next, by taking an initial hump given by the ζ(x, 0) component of the travelling
wave solution, and setting u2(x, 0) = 0, we simulate the fission of a solitary wave,
as shown in figure 14. The initial hump at x = 0 evolves into two solitary waves
propagating in opposite directions and colliding with waves coming from adjacent
computation periods.

Finally, we consider collisions of two solitary waves in the form of overtaking and
head-on, as shown in figures 15 and 16. The generation of small trailing waves after
collision indicates that the interaction is inelastic and solitary waves for this system
are not likely to behave as solitons. Figures 17 and 18 depict the history of the peak
positions for the interacting solitary waves in the overtaking and head-on collision
of figures 15 and 16, respectively. Although it is very small, a phase shift due to the
nonlinear interaction during the overtaking collision can be clearly seen in figure 17;
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Figure 15. Numerical solutions of (4.28)–(4.29) for the overtaking collision of two different solitary
waves. Initially the larger solitary wave of c/c0 = 1.2 (a/h2 ≈ 0.579) is located at x = −200 and the
smaller wave of c/c0 = 1.05 (a/h2 ≈ 0.147) at x ≈ −170.
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Figure 16. Numerical solutions of (4.28)–(4.29) for the head-on collision of two identical solitary
waves of c/c0 = 1.2, initially located at x = ±100, propagating in opposite directions.

it is such that the faster (taller) solitary wave emerges ahead of where it would be
without collision, while the slower (shorter) wave is delayed by the interaction. For
the head-on collision case, close examination of figure 18 reveals the analogous phase
shift where the peak of each solitary wave finds itself behind the position it would
have occupied if the interaction did not occur.

5. Discussion
For small aspect ratio of the thickness of the upper fluid layer to typical wavelength,

we have derived fully nonlinear models to describe the evolution of finite-amplitude
long internal waves in a two-fluid system for both shallow and deep water configu-
rations. These models retain much of the structural simplicity of the classical weakly
nonlinear models, while extending substantially their domain of asymptotic validity.
In particular, since we impose no condition on the scaling between α and ε and only
require ε � 1, we expect solutions of these model equations to automatically select
the correct scaling laws depending on a given wave amplitude. For solitary waves,
this scaling results in waves that are much wider and whose speed increases at a
much slower rate compared with their weakly nonlinear counterparts. We remark
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Figure 17. Peak locations vs. time for the overtaking collision of two solitary waves shown in
figure 15. Dashed lines (– – –) represent the peak location without interaction.
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Figure 18. Peak locations vs. time for the head-on collision of two solitary waves shown in figure 16.
Dashed lines (– – –) represent the peak location without interaction. Notice the difference in scale
with respect to figure 17.

that similar trends were also detected for internal solitary waves in continuously
stratified fluids, as described by Tung, Chan & Kubota (1982) numerically and Davis
& Acrivos (1967) experimentally.

For small-amplitude waves, as pointed out by Koop & Butler (1981), the effects of
viscosity seem to become important in selecting a scaling law between wave amplitude
and typical wavelength λI for both shallow and deep water configurations. Therefore
models for small-amplitude waves need to be based on Navier–Stokes, rather than
Euler, equations in order to properly account for energy dissipation. An investigation
on the interplay among nonlinearity, dispersion and viscosity in this regime is in
progress.

For the shallow water configuration, while our fully nonlinear theory does exhibit
the qualitative behaviour observed in previous numerical solutions and experiments,
and agrees extremely well with high-accuracy numerical solutions of Euler equations,
there remains a discrepancy for waves of large amplitude between the λI from the
theory and the λI from the experimental data by Koop & Butler (1981). Because of
the closeness of the model’s solutions to the numerical solutions of Euler equations
(Evans & Ford 1996), this discrepancy should not be attributed to the long-wave
approximation in the model, and hence we are at present unable to explain it. More
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extensive comparisons between our long-wave theory and experiments are needed
before a definite conclusion can be reached.

In § 3.3, we have looked at the limit of the highest solitary wave for our model
in the form of an internal bore. We demonstrated the existence of such internal
bore solutions of the full Euler equations in § 3.4. However, we are not aware of a
theoretical investigation, within the Euler system, of the process by which solitary
waves limit to internal bores as the wave amplitude approaches its maximum. It
would be interesting to observe this process experimentally, a task that is linked to
the theoretical question of stability of finite-amplitude solitary waves.

For the deep water configuration, the fully nonlinear solitary wave solutions of
our long-wave model show good agreement with the available experimental data λI
vs. a. This indicates that the slight overprediction of the theory by Choi & Camassa
(1996b) is due to the infinite-depth assumption therein.

We thank Y. Matsuno, A. R. Osborne and T. Y. Wu for their remarks and
for providing some of the references in the literature. We also thank the reviewer
for pointing out the work by Grue et al. (1997) and J. Grue and P. O. Rusas for
providing the data in figure 5. This work was supported in part by the DOE programs
CHAMMP and BES under the Applied Mathematical Sciences contract KC-07-01-01.

Appendix A. Unidirectional models
Models (3.19)–(3.22) and (4.17)–(4.18) for, respectively, shallow and deep water con-

figurations, can describe waves propagating in both x-directions. Thus, these models
are of particular relevance whenever counter-propagating waves are an important
aspect of the wave dynamics, such as e.g. reflections from a rigid boundary. However,
in situations where most of the waves propagate in one direction, as in the case of a
solitary wave in an unbounded domain, it should be possible to simplify the models
further. In particular, the assumption of unidirectional wave propagation results in a
relation between the velocity u1 and the free-surface location ζ which reduces bidirec-
tional systems of the type (3.19)–(3.22) and (4.17)–(4.18) to a single model equation
for either u1 or ζ.

Naturally, it would be desirable to have unidirectional models for waves of finite
amplitude, asymptotically equivalent to bidirectional models (3.19)–(3.22) for shallow
water or (4.17)–(4.18) for the deep water, respectively. However, we have not succeeded
in this task yet. Instead, in this Appendix we adopt a weakly nonlinear assumption
while using an ordering between the small nonlinearity parameter α and the long-
wave parameter ε that emphasizes nonlinearity. In contrast to the classical weakly
dispersive shallow water theory, where a single scaling parameter is introduced by
imposing α = ε2 and α = ε for, respectively, the shallow and deep water configurations,
we will only require

ε2 < α < ε (or α2 < ε2 < α) , (A 1)

and, for deep water,

ε < α < ε1/2 (or α2 < ε < α) , (A 2)

with ε � 1. Since the classical scaling between α and ε is α = O(ε2) for KdV and
α = O(ε) for ILW regimes, the new scalings in (A 1)–(A 2) imply that we are interested
in waves of larger amplitude than those described by weakly nonlinear models such as
the KdV and ILW equations. Therefore, the new unidirectional models are expected to
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contain higher-order nonlinear terms and nonlinear dispersive terms. To derive these
models, we follow the procedure of Whitham (1974, § 13.11) for the KdV equation.

(i) Shallow water configuration

After all physical variables in (3.19)–(3.22) are non-dimensionalized as

ζ = αh1ζ
∗, (u1, u2) = αU0(u

∗
1, u
∗
2), x = Lx∗, t = (L/U0)t

∗, (A 3)

we assume the relationship between ζ and u1, after dropping the asterisks as before,
as

ζ = A0u1 + αA1u
2
1 + ε2A2u1xt + α2F1 + αε2F2 + O(ε4, α3, α2ε2). (A 4)

In (A 4), F1 is a cubic function of u1 for the higher-order nonlinearity and F2 represents
nonlinear dispersive effects so that

F1 = A3u
3
1, F2 = A4u

2
1x + A5u1u1xx. (A 5)

One can see later that, by using (A 4) without Fi (i = 1, 2), the procedure described
below results in the classical KdV equation (3.37).

Following Whitham (1974), we determine constants the Ai such that, when we
substitute the expression (A 4) for ζ, we find the same evolution equation for u1,
up to O(αε2), from any equation of (3.19)–(3.22). After a lengthy manipulation, the
coefficients Ai evaluate to (in dimensional form)

A0 = −h1

c0

, A1 = −h1

c2
0

(
1 +

h1c1

2c0

)
, A2 = −h1c2

c3
0

,

A3 =
h3

1c3

c4
0

− h3
1c

2
1

2c5
0

− 3h2
1c1

2c4
0

− h1

c3
0

,

A4 = −h
2
1c4

c3
0

+
2h2

1c1c2

c4
0

+
2h1c2

c3
0

, A5 = −h
2
1c5

c3
0

+
3h2

1c1c2

c4
0

+
3h1c2

c3
0

,


(A 6)

where c0, c1 and c2 are given by (3.38), reported here for convenience,

c2
0 =

gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1

, c1 = −3c0

2

ρ1h
2
2 − ρ2h

2
1

ρ1h1h
2
2 + ρ2h

2
1h2

,

c2 =
c0

6

ρ1h
2
1h2 + ρ2h1h

2
2

ρ1h2 + ρ2h1

,

 (A 7a)

and

c3 =
7c2

1

18c0

− c0(ρ1h
3
2 + ρ2h

3
1)

h2
1h

2
2(ρ1h2 + ρ2h1)

, c4 =
17c1c2

12c0

+
c0h1h2(ρ1 − ρ2)

12(ρ1h2 + ρ2h1)
,

c5 =
7c1c2

3c0

+
c0h1h2(ρ1 − ρ2)

6(ρ1h2 + ρ2h1)
.

 (A 7b)

Then the evolution equation for u1 is given, in dimensional form, by

u1t + γ0u1x + γ1u1u1x + γ2u1xxt + γ3(u
3
1)x +

(
γ4u

2
1x + γ5u1u1xx

)
x

= 0, (A 8)

where the γi are given by

γ0 = c0, γ1 = −h1c1

c0

, γ2 = −c2

c0

,
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γ3 =
h2

1c3

c2
0

− 1

6

h2
1c

2
1

c3
0

− 1

3

h1c1

c2
0

,

γ4 = −h1c4

c0

+
3

2

h1c1c2

c2
0

+
3c2

c0

, γ5 = −h1c5

c0

+
h1c1c2

c2
0

.

By inverting (A 4) to find the expression for u1 in terms of ζ and substituting into
(A 8), the evolution equation for ζ asymptotically equivalent to (A 8) can be found as

ζt + c0ζx + c1ζζx + c2ζxxx + c3

(
ζ3
)
x

+
(
c4ζ

2
x + c5ζζxx

)
x

= 0. (A 9)

The evolution equation (A 8) or (A 9) is the KdV equation modified by a higher-order
nonlinear term of O(α2) and nonlinear dispersive terms of O(αε2).

If we neglect nonlinear dispersive terms (and so set c4 = c5 = 0), (A 9) becomes a
combination of the KdV and modified KdV equation (which has cubic, as opposed
to quadratic for KdV) nonlinearity. Notice that such an equation has been derived by
several authors by using an asymptotic expansion designed for the case of near-critical
depth ratio h1/h2 given by (3.41). The present derivation does not make explicit use
of this assumption, and hence the coefficients of the extra nonlinear terms differ from
the ones for the near-critical regime (see e.g. Funakoshi & Oikawa 1986).

If we impose the balance between nonlinear and dispersive effects, say α = O(ε2),
and want to keep all second-order terms, we need to add to (A 9) the higher-order
linear dispersive term of O(ε4)

c6ζxxxxx, c6 =
3c2

2

2c0

+
c0h1h2(ρ1h

3
1 + ρ2h

3
2)

90(ρ1h2 + ρ2h1)
. (A 10)

With this term (A 9) is sometimes referred to as the second-order KdV equation
(Koop & Butler 1981).

Equations (A 8) and (A 9) conserve a mass-like integral, defined either as
∫ +∞
−∞ u1 dx

or as
∫ +∞
−∞ ζ dx for (A 8) and (A 9), respectively. However, these models do not seem

to admit a conservation law that contains the energy-like variables u1
2 or ζ2. Lack

of an extra conservation law besides the mass also makes it difficult to compute a
travelling wave solution in closed form. It is possible however to make use of the
leading-order terms in these equations to recombine the asymptotic expansion so as
to obtain models which possess an energy conservation law. From the leading-order
terms of (A 8), we have

u1xxt + c0u1xxx + 1
2
c1(u

2
1)xxx = O(ε2). (A 11)

By multiplying (A 11) by an arbitrary constant and adding it to (A 8), many different
models asymptotically equivalent to (A 8) can be constructed. Among these models,
the particular form

u1t + γ0u1x + γ1u1u1x +

(
γ2 +

2γ4 − γ5

γ1

)
u1xxt +

γ0(2γ4 − γ5)

γ1

u1xxx

+γ3

(
u3

1

)
x

+ (γ5 − γ4)
(
u2

1x + 2u1u1xx

)
x

= 0, (A 12)

conserves the following integral:

E =
1

2

∫ +∞

−∞

[
u2

1 −
(
γ2 +

2γ4 − γ5

γ1

)
u2

1x

]
dx. (A 13)
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Similarly, the following evolution equation for ζ:

ζt + c0ζx + c1ζζx +

(
2c4 − c5

c1

)
ζxxt +

(
c2 +

c0(2c4 − c5)

c1

)
ζxxx

+c3

(
ζ3
)
x

+ (c5 − c4)
(
ζ2
x + 2ζζxx

)
x

= 0, (A 14)

conserves

E =
1

2

∫ +∞

−∞

[
ζ2 −

(
2c4 − c5

c1

)
ζ2
x

]
dx. (A 15)

Travelling wave solutions of (A 14) with X = x− ct can be computed by quadratures
thanks to the existence of this conservation law. For solitary waves, equation (A 14)
reduces to

ζX
2 = Cu

ζ2(ζ − ã+)(ζ − ã−)

ζ − ã∗ , (A 16)

where the coefficient Cu is

Cu =
c3

4(c4 − c5)
,

the denominator’s root ã∗ is

ã∗ =
c2(c4 − c5) + (c0 − c)(2c4 − c5)

2c1(c4 − c5)
,

and ã± are the roots of the quadratic equation

ζ2 +
4

3

c1

c3

ζ + 2
c0 − c
c3

= 0 ,

respectively. Notice the structural similarity of equation (A 16) with that of (3.50) for
the solitary wave solutions of the Green–Naghdi system, i.e. ζX

2 is given by the ratio
of a quartic and a linear polynomial in ζ. Hence, ζ(X) is determined implicitly via
elliptic integrals similar to (3.58). Compared to the solutions of the Green–Naghdi
system (3.50), the solitary wave solutions of (A 16) are better approximations than
their KdV or modified KdV counterparts, over a broad range of parameter values
in the shallow water configuration (away from the critical depth ratio (3.41)). Given
the excellent agreement between the analogous solutions of the Green–Naghdi and
Euler systems, it seems likely that nonlinearity effects of the original system can
be rendered more accurately by unidirectional equations of the type (A 14), while
maintaining the simplicity of their classic weakly nonlinear counterparts. Of course,
complete integrability of (some of) the classic weakly nonlinear models makes them
important objects from a mathematical point of view. It is unknown at the moment
whether this feature is present in any of the higher-order models.

(ii) Deep water configuration

By following a procedure similar to the one above for the shallow water configura-
tion using the scaling law given by (A 2), we can derive the unidirectional model for
the deep water case from (4.17)–(4.18) non-dimensionalized by

ζ = αh1ζ
∗, u1 = αc0u

∗
1, x = Lx∗, t = (L/c0)t

∗ , (A 17)
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where c2
0 = gh1(ρ2/ρ1 − 1). First, we assume a relation between ζ and u1,

ζ = A1u1 + αA2u
2
1 + εA3Tc[u1t] + α2F1 + αεF2 + O(ε2, α3, α2ε). (A 18)

As before, we determine the Ai and Fi such that, when (A 18) is substituted for ζ,
both (4.17) and (4.18) yield the same evolution equation up to O(αε). The results are
given by

A1 = −1, A2 = − 1
4
, A3 = − 1

2
(ρ2/ρ1),

F1 = 0, F2x =
(
ρ2/ρ1

) (
5
16
Tc[u

2
1]xx + 1

4
u1xTc[u1x] + 3

8
u1Tc[u1xx]

)
.

The evolution equation for u1 is then

u1t + u1x + 3
2
αu1u1x − 1

2
ερrTc[u1xt] + αερr

(
11
16
Tc[u

2
1]xx

− 1
4
u1xTc[u1x]− 3

8
u1Tc[u1xx]

)
= 0, (A 19)

where ρr = ρ2/ρ1 and the error terms are O(ε2, α3, α2ε). Likewise, the equation for ζ
can be written as

ζt + ζx − 3
2
αζζx + 1

2
ερrTc[ζxx]− 3

8
α2ζ2ζx − αερr ( 9

16
Tc[ζ

2]xx

+1
2
ζxTc[ζx] + 5

8
ζTc[ζxx]

)
= 0. (A 20)

Once again, when we assume the balance between nonlinear and dispersive effects
α = O(ε), the following higher-order linear dispersive term of O(ε2) (Matsuno 1994)

− 3
8
ε2
(
ρ2
r − 4

9

)
ζxxx (A 21)

needs to be added to (A 20). By taking ε = α = 1, all physical variables in (A 19)–
(A 20) can be regarded as being non-dimensionalized with respect to h1 and c0. The
dimensional form of (A 20) can be written as

1

c0

ζt + ζx − 3

2h1

ζζx +
ρrh1

2
Tc[ζxx]− 3

8h2
1

ζ2ζx

−ρr ( 9
16
Tc[ζ

2]xx + 1
2
ζxTc[ζx] + 5

8
ζTc[ζxx]

)
= 0. (A 22)

As in the case of the shallow water configuration, both (A 19) and (A 20) conserve
a mass-like integral such as

∫ +∞
−∞ u1 dx or

∫ +∞
−∞ ζ dx for (A 19) and (A 20), respectively,

but these equations do not seem to possess a conservation law that contains the
energy-like variable u2

1 or ζ2. We can correct this by using the leading-order equation
from the first three terms in (A 19) in the form

Tc[u1xt] +Tc[u1xx] + 3
4
αTc[u

2
1]xx = O(ε), (A 23)

and adding it to (A 19) multiplied by the factor − 5
4
ερr . In this way we obtain the

equation

u1t + u1x + 3
2
αu1u1x − 7

4
ερrTc[u1xt]− 5

4
ερrTc[u1xx]

− 1
8
αερr

(
2Tc[u

2
1]xx + 2u1xTc[u1x] + 3u1Tc[u1xx]

)
= 0, (A 24)

which conserves the definite sign integral

E =
1

2

∫ +∞

−∞

(
u2

1 − 7ερr
4
u1Tc[u1x]

)
dx, (A 25)
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as one can check easily. Similarly, one can find from (A 20) an equation for ζ
possessing an energy conservation law,

ζt + ζx − 3
2
αζζx − 1

4
ερrTc[ζxt] + 1

4
ερrTc[ζxx]

− 3
8
α2ζ2ζx − αερr ( 3

8
Tc[ζ

2]xx + 1
2
ζxTc[ζx] + 5

8
ζTc[ζxx]

)
= 0.(A 26)

It is easy to verify that the flow governed by this equation conserves the integral

E =
1

2

∫ +∞

−∞

(
ζ2 − ερr

4
ζTc[ζx]

)
dx. (A 27)
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